В предыдущих публикациях было описано устройство ПЗС-матрицы фотоаппарата, особенности, достоинства и недостатки таких матриц.
К достоинствам ПЗС-матриц можно отнести:
- Высокий коэффициент использования площади пиксела (близок к 100%);
- относительно низкий уровень шумов;
- очень высокая эффективность;
- достаточно большой динамический диапазон.
К недостаткам ПЗС-матриц относятся:
- высокая энергоемкость;
- достаточно сложный процесс считывания информации;
- дорогостоящее производство.
В современных цифровых фотоаппаратах применяются не только матрицы на основе ПЗС, но и КМОП-матрицы, доля фотоаппаратов, оснащенных такими матрицами постоянно растет.
КМОП-матрица фотоаппарата.
Еще в конце 60-х годов прошлого века ученые знали свойство КМОП-стуктур воспринимать свет. Однако ПЗС-структуры обеспечивали гораздо более высокую чувствительность к свету и высокое качество изображения. Вот почему матрицы на основе КМОП-технологии не получили столь широкого распространения. В начале 90-х годов характеристики КМОП-матриц и их производство были значительно улучшены, что привело к более широкому внедрению этих матриц. Революционные открытия были сделаны в лаборатории реактивного движения (Jet Propulsion Laboratory — JPL NASA), где были созданы активные пикселы (Active Pixel Sensors – APS). Суть состояла в том, что в каждый пиксел был добавлен транзисторный усилитель сигнала, что позволило преобразовывать заряд в напряжение непосредственно в самом пикселе. Благодаря этому стал возможен произвольный доступ к отдельным пикселам, в принципе аналогичный схемам ОЗУ.
В результате уже к 2008 году матрицы на КМОП-элементах стали альтернативой ПЗС-матрицам.
КМОП-матрица ( комплиментарная структура металл-окисел-полупроводник), в английской транскрипции — CMOS (Complementary metal oxide semiconductor), в принципе похожа на ПЗС-матрицу. Также, как и в ПЗС под воздействием света рождаются электроны.
Ячейки КМОП-матриц представляют из себя полевые транзисторы с изолированным затвором и имеют каналы разной проводимости.
В отличие от ПЗС-элемента каждая ячейка КМОП-матрицы имеет дополнительно электронные устройства, называемые обвязкой пиксела, позволяющие преобразовывать заряд в напряжение непосредственно в ячейке.
На рис.1 показана эквивалентная схема устройства КМОП-элемента.
Рис.1. Эквивалентная электрическая схема КМОП-элемента.
1 — Светодиод. 2 — электронный затвор. 3 — конденсатор, накапливающий заряд с фотодиода. 4 — усилитель сигнала. 5 — шина считывания строки. 6 — шина, по которой происходит передача сигнала процессору. 7 — линия подачи сигнала сброса.
Принцип работы приведенной схемы:
-
перед съемкой изображения по линии 7 подается сигнал сброса;
-
при воздействии света на фотодиод в нем пропорционально интенсивности светового потока создается заряд, который заряжает конденсатор;
-
считывание сигнала с элемента происходит путем разряда конденсатора, возникающий при этом ток передается на усилитель и далее в обрабатывающую схему.
Синхронизация работы матрицы осуществляется через адресные шины столбцов и строк.
Благодаря такой схеме появляется возможность считывать заряд сразу из группы пикселей (а не последовательно ячейка за ячейкой, как в ПЗС-матрице) или даже выборочно из отдельных пикселей. В такой матрице отсутствует необходимость в регистрах сдвига столбцов и строк, что намного убыстряет процесс считывания информации с матрицы, . Значительно уменьшается и энергопотребление матрицы.
Прогресс в развитии технологий, в частности получения кремниевых пластин высокого качества и улучшения схемы усилителя КМОП-элемента, привел к тому, что последний вышел по качеству получаемого изображения практически на тот же уровень, что и ПЗС-элемент.
Преимущества КМОП-матрицы:
-
Прежде всего значительно снижено энергопотребление, благодаря тому, что в КМОП-матрице цепочка обработки информации не такая длинная, как в ПЗС-матрице, особенно низким энергопотреблением КМОП-матрица отличается в статическом режиме.
-
Схема ячейки КМОП-матрицы позволяет ее интегрировать непосредственно с аналого-цифровым преобразователем и даже с процессором. Это создает возможность объединения в одном кристалле как аналоговой схемы, так и цифровой и обрабатывающей. Благодаря этому стала возможной дальнейшая миниатюризация цифровых камер,снижение их стоимости из-за отсутствия необходимости в дополнительных процессорных микросхемах.
-
Возможность произвольного доступа к ячейкам КМОП позволяет считывать отдельные группы пикселей. Эта возможность получила название кадрированного считывания, т. е. считывания только части всего кадра, в отличие от ПЗС-матрицы, где для обработки информации необходимо выгрузить всю матрицу. Благодаря этому для обеспечения быстрого просмотра изображения на встроенном дисплее фотоаппарата с относительно небольшим числом пикселей можно выводить только часть информации. Для просмотра этого будет достаточно, можно контролировать точность фокусировки и т. д.
-
Кроме того для большей скорости ведения репортажной съемки можно вести ее с меньшим размером кадра и меньшим разрешением.
-
Еще одним достоинством КМОП-матрицы является возможность добавления к имеющемуся внутри КМОП-элемента усилителю еще усилительные каскады, тем самым значительно увеличить чувствительность матрицы. А возможность регулировки усиления для каждого цвета позволяет улучшить баланс белого.
-
Производство КМОП-матриц проще и дешевле, чем ПЗС, его может освоить практически любой завод, занимающийся производством микроэлектроники. Особенно это сказывается при производстве матриц большого размера.
Недостатки КМОП-матрицы:
-
К недостаткам КМОП-матрицы по сравнению с ПЗС-матрицей следует отнести прежде всего уменьшение светочувствительной части элемента из-за наличия электронной обвязки вокруг пиксела. Именно поэтому вначале КМОП-матрицы имели существенно более низкую чувствительность, чем ПЗС-матрицы. Положение изменилось с разработкой и выпуском на рынок компанией Sony в 2007 году КМОП-матриц, изготовленных по технологии EXMOR, применявшейся ранее для специфических устройств, таких как электронные телескопы. Размер светочувствительной части пиксела удалось увеличить за счет перемещения электронной обвязки в нижний слой элемента, где она не мешала попаданию света. Это привело к увеличению чувствительности каждого пиксела и всей матрицы.
-
В каждом из элементов КМОП-матрицы имеются еще электронные элементы, которые по свойствам электронных схем обладают своим шумом, и этот шум добавляется к шуму непосредственно светочувствительного элемента. Причем для каждого пиксела уровень этого шума разный.
-
Величина сигнала,получаемого с каждого пиксела зависит не только от характеристик самого фотодиода, но и от свойств каждого элемента электронной обвязки пиксела. Отсюда получается , что у каждого КМОП-элемента своя характеристическая кривая (отражающая соответствие сигнала, получаемого с элемента яркости падающего на него света), а в целом пиксели матрицы имеют разброс по чувствительности, что приводит к т. н. структурному шуму. Из-за этого поначалу КМОП-матрицы имели более низкое разрешение, чем ПЗС-матрицы.
-
Наличие на каждом пикселе дополнительных электронных элементов приводит к дополнительному нагреву всей ячейки, что является причиной теплового шума.
Таким образом каждый тип матриц имеет свои достоинства и недостатки. В настоящее время они по своим характеристикам все более сближаются. И по-видимому при выборе фотокамеры следует исходить не столько из типа матрицы, сколько из ее размера и разрешения.
На закуску предлагаю посмотреть видеоролик, который наглядно демонстрирует различия в передаче информации в ПЗС-матрице и КМОП-матрице:
Друзья! Буду благодарен, если Вы поделитесь данным материалом в социальных сетях, оставите ретвиты и g+.
Поделиться в соц. сетях
[…] – CMOS (Complementary Metal-Oxide Semiconductor – комплементарная структура металл-окисел-полупроводник), в русской транскрипции КМОП-матрицы; […]